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groups were obtained in an analogous way when diketone 15 
was allowed to react with the appropriate lithium reagent 

followed by addition of water. Both ethyl and isopropyl groups 
were found to be in basal positions in the corresponding di-
cations 16 and 17, respectively, which is rationalized in Scheme 
III. 
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Organolithium Substitution at a 
Bicyclo[1.1.0]butane Bridgehead Position. Evidence 
for a Bicyclo[1.1.0]but-l(3)-ene as a 
Reaction Intermediate 

Sir: 

The intriguing molecule bicyclof 1.1.0]but-l (3)-ene has so 
far only been known to theorists; calculations' suggest that it 
represents a local minimum on the C4H4 potential energy 
hypersurface. We now wish to report preliminary experimental 
evidence for the fleeting existence of a species containing 
such a skeletal unit in the reaction of 1-chlorotricyclo-
[4.1.0.O2'7]heptane (la)2 with organolithium derivatives. 

Addition of la to an ether solution of 3 equiv of n-butyl-
lithium at room temperature produced, after aqueous workup, 
an 87% isolated yield of l-«-butyltricyclo[4.1.0.02'7]heptane 
(2a) in a practically instantaneous reaction. Structure proof 
for 2a rests on its mass spectrum and its 1H NMR, the latter 
showing, in addition to the expected signals for the side chain, 
the same pattern for the framework protons as the parent hy­
drocarbon tricyclo[4.1.0.02,7]heptane (Ic).3 
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The derivatives 2b-2d were prepared under similar condi­
tions;4 the NMR spectra of 2c5 and 2d6 were identical with 
those reported in the literature. 

We consider three mechanistic pathways as possible routes 
to the products: (I) direct coupling between the organolithium 
compound and la; (II) halogen-metal exchange between la 
and the organolithium derivative forming Id and the corre­
sponding chloride, followed by a coupling reaction between 
these components (in the case of 2d dehydrobenzene could be 
involved); (III) elimination of hydrogen chloride from la by 
the organometallic reagent with the formation of a 
bicyclo[1.1.0]but-l(3)-ene derivative and addition of the or­
ganolithium compound to the strained double bond. The fol­
lowing observations provide arguments against the mechanisms 
I and II. (a) When l-chloro-7-methyltricyclo[4.1.0.02'7]hep-
tane (3)2 was added to a threefold excess of «-butyllithium in 
ether and kept for 15 h at 20 0C, on aqueous workup, 3 was 
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isolated unchanged. This shows that direct coupling as well as 
chlorine-lithium exchange are insignificant processes and that 
the absence of a proton at C-7 prevents the substitution reac­
tion to take place, (b) l-Bromotricyclo[4.1.0.02-7]heptane ( lb)7 

and /i-butyllithium in ether led (via Id) to the parent hydro­
carbon Ic as the main product indicating lithium-bromine 
exchange in this case to be fast and the possible consecutive 
coupling between Id and n-butyl bromide, however, under the 
applied conditions (15 min at 20 0 C), to be an inefficient 
process.8 As alkyl chlorides need longer reaction times to 
couple successfully with organolithium compounds than the 
corresponding alkyl bromides,9 this result further excludes that 
the derivatives 2 were produced via route H. (c) When la and 
n-butyllithium were quickly mixed and the mixture was 
quenched with D2O after reaction times of 30, 90, and 150 s 
at 20 0 C , l-w-butyltricyclo[4.1.0.02-7]heptane-7-d was ob­
tained, in each case with a deuterium content >96%.10 The 
bridgehead metalation of the parent hydrocarbon Ic with n-
butyllithium in ether has been shown to occur rather slowly.1'; 
Therefore, the introduction of the lithium to the bicyclo-
[1.1.0] butane unit must have taken place not at the stage of 
the final product 2a with the excess of the organometallic base 
but at an earlier step of the reaction sequence. 

Mechanisms I and II are inconsistent with these results; 
however, all our observations are in accord with HI which is 
outlined in Scheme I. 
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Synthesis of 0,7-Unsaturated Esters. 
Direct Generation of Ester Dienolates from 
0-Keto Ester Tosylhydrazone Trianions 

Sir: 

An excellent and frequently used procedure for the ketone 
-»• olefin (1 - • 6) transformation is the Shapiro reaction.1 The 
ketone 1 is converted to its tosylhydrazone derivative (2) which, 
in turn, is allowed to react with >2 equiv of strong base 
(CHsLi, LiNR.2) to yield ultimately olefin 6 via the successive 
intermediacy of tosylhydrazone dianion (3), vinyldiazinyl 
anion (4), and vinyllithium (5).2 

The chlorine atom in la should enhance the acidity of the 
proton at C-7 and accelerate the metalation reaction12-13 to 
4. The consecutive /3 elimination of lithium chloride from 4 
leads to tricyclo[4.1.0.02'7]hept-l(7)-ene (5) as a reaction 
intermediate. This highly strained hydrocarbon adds, as ex­
pected, the organolithium reagent with the formation of 
6.14 

The three-carbon bridge in 5 connecting C-2 and C-6 causes 
the bicyclo[1.1.0]but-l(3)-ene unit to take a bent structure. 
It is interesting to note that this might not introduce additional 
strain into the molecule: calculations predict nonplanarity for 
the parent olefin.1 

The proposed scheme for the substitution reaction implies 
that the carbon atoms 1 and 7 become chemically equivalent 
on their way from la to 6.15 Experiments to test this conse­
quence are in progress. Also, attempts are underway to trap 
the proposed intermediate 5 with further suitable reagents. 
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In connection with one of our programs, we are evaluating 
the synthetic potential of deprotonation reactions of more 
highly functionalized tosylhydrazones.3 We are pleased to 
report that reaction4 of a series of /3-keto ester tosylhydrazones 
7-18 with 3.1 equiv of lithium diis'opropylamide5 (LDA) in 
tetrahydrofuran at - 7 8 0 C, followed by warming to room 
temperature (4-24 h), quenching with ammonium chloride, 
and distillation, provides an exceptionally convenient synthesis 
of/3,7-unsaturated esters 19-30 (Table I). 

The penultimate intermediate in this unsaturated ester 
synthesis is presumed to be a dienolate, which undergoes ki­
netic protonation a to the ester moiety; thus, the simple expe­
dient of quenching the reaction mixture with various electro-
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